Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andreas Decken,* Erin D. Gill and Frank Bottomley

Department of Chemistry, University of New Brunswick, Fredericton, NB, PO Box 45222, Canada E3B 6E2

Correspondence e-mail: adecken@unb.ca

Key indicators

Single-crystal X-ray study
$T=198 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.025$
$w R$ factor $=0.066$
Data-to-parameter ratio $=10.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Hydroxy-2-phenyl-4,7-dihydroisophosphindolinium chloride

The title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OP}^{+} \cdot \mathrm{Cl}^{-}$(systematic name: 2-hy-droxy-2-phenyl-1,3,4,7-tetrahydroisophosphindenium chloride), displays a nearly planar isophosphindolinium skeleton, where a significant deviation from planarity is observed only for the P atom. Strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ bonds result in ion pairs, but an extended hydrogen-bonding network is not present.

Comment

The title compound, (I), is an intermediate in one of the avenues pursued in the synthesis and characterization of tricarbonyl $\left(\eta^{5}\right.$-isophosphindolyl)manganese, the first complex bearing the isophosphindolyl skeleton (Decken et al., 2004).

The isophosphindolinium ring system in (I) is not completely planar; the eight C atoms of the bicyclic unit fit a leastsquares plane to within 0.037 (2) \AA, but the P atom deviates by 0.378 (2) A from this plane. This results in a folding angle of 17.6 (1) ${ }^{\circ}$ with the $\mathrm{C} 1 / \mathrm{P} / \mathrm{C} 3$ plane. However, the distortion from planarity is not as pronounced as in the closely related compound 2-oxo-2-phenyl-1,3,4,7-tetrahydroisophosphindole, (II), (Decken et al., 2004), where the deviation of the P atom is 0.484 (2) \AA, leading to a folding angle of $22.58(6)^{\circ}$. In addition, the envelope is folded toward the hydroxy group and away from the phenyl group in (I), opposite to the conformation adopted in (II). As a result, torsion angles are 99.6 (1) ($\mathrm{C} 4 \mathrm{a}-\mathrm{C} 3-\mathrm{P}-\mathrm{O}), \quad 102.8$ (1) $\quad(\mathrm{C} 7 \mathrm{a}-\mathrm{C} 1-\mathrm{P}-\mathrm{O}), \quad 145.7$ (1) $(\mathrm{C} 4 \mathrm{a}-\mathrm{C} 3-\mathrm{P}-\mathrm{C} 8)$ and $145.2(1)^{\circ}(\mathrm{C} 7 \mathrm{a}-\mathrm{C} 1-\mathrm{P}-8)$ in compound (I), while the corresponding angles are 135.3 (1), 134.6 (1), 88.9 (1) and 87.7 (1) ${ }^{\circ}$ in (II). The title compound is ionic, with Cl^{-}anions located between sheets of the organic cations and held by strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds [1.87 (3) \AA]. However, a much shorter hydrogen bond is observed in $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$, (III) [1.63 (4) \AA; Haupt et al., 1977], the only hydroxyphosphonium chloride previously characterized by X-ray crystallography. The $\mathrm{P}-\mathrm{O}$ bond length [1.5516 (14) \AA] is comparable to the corresponding distances in (III) $\left[1.517\right.$ (2) \AA], $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}[1.550$ (6) \AA; Lane et al., 1992] and ${ }^{i} \operatorname{Pr}_{3} \mathrm{P}-\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ [1.573 (2) \AA; Ruthe et al., 2000]. The P atom in (I) is in a tetrahedral environment and the phenyl group is almost orthogonal to the isophosphindolinium fragment [87.56(4) ${ }^{\circ}$, similar to the geometry observed in (II) [87.06 (6) ${ }^{\circ}$].

Experimental

The title compound is an intermediate in the published synthesis of 2-phenyl-1,3,4,7-tetrahydroisophosphindole 2-oxide (Middlemas \& Quin, 1979). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.356 MHz, CDCl_{3}): δ 62.0. ${ }^{1} \mathrm{H}$ NMR (399.945 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.75(d d, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(d, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(d d, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(s, 2 \mathrm{H}), 2.98(t, J=$ $16.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 6 \mathrm{H})$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OP}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=266.69$
Orthorhombic, Pna 2_{1}
$a=14.9111(15) \AA$
$b=8.7445(9) \AA$
$c=10.4465(10) \AA$
$V=1362.1(2) \AA \AA^{3}$
$Z=4$
$D_{x}=1.300 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 4853
reflections
$\theta=2.7-25.5^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=198$ (2) K
Irregular fragment, colourless $0.50 \times 0.28 \times 0.25 \mathrm{~mm}$

Data collection

Bruker AXS SMART 1000/P4
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.816, T_{\text {max }}=0.910$
6519 measured reflections

Figure 1
A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Decken, A., Bottomley, F., Wilkins, B. E. \& Gill, E. D. (2004). Organometallics, 23, 3683-3693.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Haupt, H. J., Huber, F., Kruger, C., Preut, H. \& Thierback, D. (1977). Z. Anorg. Allg. Chem. 436, 229-236.
Lane, H. P., McAuliffe, C. A. \& Pritchard, R. G. (1992). Acta Cryst. C48, 20022004.

Middlemas, E. D. \& Quin, L. D. (1979). J. Org. Chem. 44, 2587-2589.
Ruthe, F., Jones, P. G., duMont, W.-W., Deplano, P. \& Mercuri, M. L. (2000). Z. Anorg. Allg. Chem. 626, 1105-1111.
Sheldrick, G. M. (1997a). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

