Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andreas Decken,* Erin D. Gill and Frank Bottomley

Department of Chemistry, University of New Brunswick, Fredericton, NB, PO Box 45222, Canada E3B 6E2

Correspondence e-mail: adecken@unb.ca

Key indicators

Single-crystal X-ray study T = 198 K Mean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.066 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

2-Hydroxy-2-phenyl-4,7-dihydroisophosphindolinium chloride

The title compound, $C_{14}H_{16}OP^+ \cdot Cl^-$ (systematic name: 2-hydroxy-2-phenyl-1,3,4,7-tetrahydroisophosphindenium chloride), displays a nearly planar isophosphindolinium skeleton, where a significant deviation from planarity is observed only for the P atom. Strong $O-H\cdots Cl$ bonds result in ion pairs, but an extended hydrogen-bonding network is not present.

Received 1 October 2004 Accepted 28 October 2004 Online 6 November 2004

Comment

The title compound, (I), is an intermediate in one of the avenues pursued in the synthesis and characterization of tricarbonyl(η^5 -isophosphindolyl)manganese, the first complex bearing the isophosphindolyl skeleton (Decken *et al.*, 2004).

The isophosphindolinium ring system in (I) is not completely planar; the eight C atoms of the bicyclic unit fit a leastsquares plane to within 0.037 (2) Å, but the P atom deviates by 0.378 (2) Å from this plane. This results in a folding angle of $17.6 (1)^{\circ}$ with the C1/P/C3 plane. However, the distortion from planarity is not as pronounced as in the closely related compound 2-oxo-2-phenyl-1,3,4,7-tetrahydroisophosphindole, (II), (Decken et al., 2004), where the deviation of the P atom is 0.484 (2) Å, leading to a folding angle of 22.58 (6)°. In addition, the envelope is folded toward the hydroxy group and away from the phenyl group in (I), opposite to the conformation adopted in (II). As a result, torsion angles are 99.6 (1) (C4a-C3-P-O), 102.8 (1) (C7a-C1-P-O), 145.7 (1) (C4a-C3-P-C8) and $145.2(1)^{\circ}$ (C7a-C1-P-8) in compound (I), while the corresponding angles are 135.3 (1), 134.6 (1), 88.9 (1) and 87.7 (1) $^{\circ}$ in (II). The title compound is ionic, with Cl⁻ anions located between sheets of the organic cations and held by strong O-H···Cl hydrogen bonds [1.87 (3) Å]. However, a much shorter hydrogen bond is observed in Ph₃P-O-H···Cl, (III) [1.63 (4) Å; Haupt *et al.*, 1977], the only hydroxyphosphonium chloride previously characterized by X-ray crystallography. The P-O bond length [1.5516 (14) Å] is comparable to the corresponding distances in (III) [1.517 (2) Å], Ph₃P-O-H···Br [1.550 (6) Å; Lane et al., 1992] and ${}^{i}Pr_{3}P-O-H\cdots I$ [1.573 (2) Å; Ruthe et al., 2000]. The P atom in (I) is in a tetrahedral environment and the phenyl group is almost orthogonal to the isophosphindolinium fragment [87.56 $(4)^{\circ}$], similar to the geometry observed in (II) [87.06 (6) $^{\circ}$].

Experimental

The title compound is an intermediate in the published synthesis of 2phenyl-1,3,4,7-tetrahydroisophosphindole 2-oxide (Middlemas & Quin, 1979). ³¹P {¹H} NMR (121.356 MHz, CDCl₃): δ 62.0. ¹H NMR (399.945 MHz, CDCl₃): δ 7.75 (*dd*, *J* = 7.2, 7.2 Hz, 2H), 7.58 (*d*, *J* = 7.2 Hz, 1H), 7.51 (*dd*, *J* = 7.2, 7.2 Hz, 2H), 5.80 (*s*, 2H), 2.98 (*t*, *J* = 16.8 Hz, 2H), 2.75 (*m*, 6H).

> Mo $K\alpha$ radiation Cell parameters from 4853

reflections $\theta = 2.7-25.5^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 198 (2) K

 $\begin{array}{l} R_{\rm int} = 0.020 \\ \theta_{\rm max} = 25.0^{\circ} \\ h = -17 \rightarrow 16 \end{array}$

 $k = -9 \rightarrow 10$

 $l = -12 \rightarrow 12$

Irregular fragment, colourless $0.50 \times 0.28 \times 0.25 \text{ mm}$

2254 independent reflections 2180 reflections with $I > 2\sigma(I)$

Crystal data

$C_{14}H_{16}OP^+ \cdot Cl^-$
$M_r = 266.69$
Orthorhombic, Pna21
a = 14.9111 (15) Å
b = 8.7445 (9) Å
c = 10.4465 (10) Å
$V = 1362.1 (2) \text{ Å}^3$
Z = 4
$D_x = 1.300 \text{ Mg m}^{-3}$

Data collection

Bruker AXS SMART 1000/P4
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.816, T_{\max} = 0.910$
6519 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 0.02P]
$wR(F^2) = 0.066$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2254 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
218 parameters	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	Absolute structure: Flack (1983),
-	997 Friedel pairs
	Flack parameter $= 0.04$ (6)

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O-H14\cdots Cl^i$	0.98 (3)	1.87 (3)	2.8449 (16)	172 (2)
Symmetry code: (i	$\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} +$	Ζ.		

H atoms were located in Fourier difference maps and refined with isotropic displacement parameters; C–H distances are in the range 0.90 (2)–0.99 (2) Å.

Figure 1

A view of the title compound, with displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

- Decken, A., Bottomley, F., Wilkins, B. E. & Gill, E. D. (2004). *Organometallics*, **23**, 3683–3693.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Haupt, H. J., Huber, F., Kruger, C., Preut, H. & Thierback, D. (1977). Z. Anorg. Allg. Chem. 436, 229–236.
- Lane, H. P., McAuliffe, C. A. & Pritchard, R. G. (1992). Acta Cryst. C48, 2002– 2004.
- Middlemas, E. D. & Quin, L. D. (1979). J. Org. Chem. 44, 2587-2589.
- Ruthe, F., Jones, P. G., duMont, W.-W., Deplano, P. & Mercuri, M. L. (2000). Z. Anorg. Allg. Chem. 626, 1105–1111.
- Sheldrick, G. M. (1997*a*). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.